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Abstmct. Calculations of the phase transition temperature and the critical cancentration of 
electric dipoles which induce in the host crystal lattice the p h s e  transition with the appearance 
of long-range order are carried out. These cdculatians BE made by Considering lhe additional 
static random electric fields awing to defects OF other types: elostic dipoles and point electric 
chorges. The distribution fuct ion of the joint m l o n  of the aforementioned random fields IS also 
calculated It IS shown that the presence of the defects of other types inhibits phase transition so 
lhnt. For the occurrence of long-range order, in  this case larger concentrations OF electric dipoles 
are necessary. The theoretical results obtained are found to be impormt for a description of lhe 
expenmental situxion in Ki.,Li,TaOx. PbMgl/jNb2/lOl and other disordered ferroelectrics. 

1. Introduction 

The problem of phase transitions in disordered ferroelectrics is one of the most widely 
investigated and discussed problems of phase transition physics. This is due both to large 
number of phases in these systems (e.g. ferroelectric and ferroelastic phases, dipole and 
quadrupole glass states, and feiioglass intermediate phases) and to the unusual physical 
properties of these systems. 

The disordered ferroelectrics of different types have different phase transitions. For 
example in incipient ferroelectrics such as KTaO3:Li,Nb,Na; SrTiO3:Ca or PbTe:Ge with 
dipole impurities, the ferroelectric phase and the dipole glass state are realized at n > n,, 
and n c ncr, respectively, where n, is the critical concentration of dipole impurities [ I ] .  In 
ferroelectrics such as PbMgl/?Nb2/303 (PMN) or PbScpNbtpO3 (PSN) with diffuse phase 
transitions, only a transition to the dipole glass state was observed (see, e.g., [Z, 31). The 
largest number of phase transitions was observed in mixed ferroelectrics of the KDP family, 
e.g. Rbl-,(NH4),HzP04 (RADP). There are ferroelectric, antiferroelectric, dipole glass and 
intermediate ferroglass phases [4]. 

The explanation of such a rich phase transition picture is usually based on the common 
feature of the aforementioned systems, namely the presence of electric dipoles with random 
sites and orientations in the host crystal lattice. The constant-sign electric fields arising 
because of indirect interaction of electric dipoles via host lattice soft phonons [5] lead mainly 
to the possible appearance of long-range ferroelectric order in these systems. However, the 
real occurrence of phases with long-range or Short-range (glassy) order depends on the 
competition of the aforementioned fields with various types of random field of alternating 
sign. They are random electric fields due to direct interaction of impurity electric dipoles, 
random electric fields created by point charge defects (e.g. excess point charges in the PMN 
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lattice [61) and random elastic fields created both by the aforementioned defects and by 
unavoidable defects of another type [6] .  

Nevertheless up to now, only random electric fields of impurity dipoles have been 
considered as those competing with constant-sign electric fields. The calculated value of 
the critical concentration [7] in this model tums out to be much lower than the experimentally 
observed value [ S I .  The variation in the latter quantity due to additional impurity electric 
dipoles which create additional random electric fields was considered in 191. The qualitative 
results of this consideration are quite obvious, but the question about the probable phase 
transition due to these additional dipoles of unknown nature is still left unanswered. 

In the present paper, calculations of the critical concentration of electric dipoles, which 
induce in the host crystal a lattice phase transition with the appearance of long-range order 
together with a concentration dependence of the phase transition temperature are carried 
out. The calculations are made with respect to random electric fields of both electric dipoles 
and defects of other types, i.e. elastic dipoles and point electric charges. The distribution 
functions of the abovementioned random fields are also calculated. It is shown that the 
presence of defects of other types inhibits the phase transition so that, for the appearance 
of long-range order, in this case larger concentrations of electric dipoles are necessary. 

M D Glinchuk and V A Srephanovich 

2. Random electric fields in disordered ferroelectrics 

Let us consider a highly polarizable dielectric with soft phonon modes and with randomly 
situated electric dipoles oriented in the crystal lattice and point defects with electric charge 
or elastic dipoles. The Hamiltonian of such system can be written as follows: 

where Zi = d;/d; is a unit vector pointing along the direction of ith defect effective dipole 
moment, E(ri) is the intemal electric field so that the first and second terms in the large 
parentheses of equation (1) denote a random electric field acting on the ith dipole site both 
from other dipoles of the same type and from defects of another type, r;j = rj - r; and 
01,o = x ,  y .  z. The function K'fl(ri,) for crystals with soft phonon modes in a harmonic 
approximation has the form [ 11 

d *' 
EO 

K"fl(r;,) = --[h(r;j)&fl+ ( 3 ~ 0  - &ogIfz(ri,)I ( 2 4  

where EO, rc and V are the pure crystal dielectric permittivity, the correlation radius and 
the volume, respectively. Note that the second term in the function f l  is added so that the 
boundary conditions for a shorter sample are correct [lo]. As was shown in [ I t ] ,  this term 
is completely defined by the host lattice anharmonicity coefficient. In the same reference 
the expressions for f, ( x )  and fz(x) with respect to anharmonicity are calculated, Here we 
d o  not give them because they are in a cumbersome form. 
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The sources of the internal electric field E(?-;) could be point charge defects, charged 
dislocations and, in crystals with a piezoeffect, elastic dipoles, dislocations and disclinations. 
The number of some of the above-mentioned defects, e.g. vacancies, impurity ions and 
dislocations, depends on the sample preparation technology and hence should vary from 
sample to sample. At the same time, point charge defects should be present, e.g. in 
ferroelectrics with diffuse phase transitions because of site disorder in the B-sublattice 
ions and because of lead and oxygen vacancies. It is well known that the presence of an 
equilibrium quantity of oxygen vacancies is peculiar to lattices with a perovskite structure 
and to KTaO3 and SrliOl in particular. For mixed systems of the KDP family the presence 
of elastic dipoles due to the difference between ionic radii of substitutional and host lattice 
ions is possible [12]. Owing to static shifts of the ions the elastic dipoles can play an 
important role in ferroelectrics with diffuse phase transitions where any lattice ion can be 
shifted from its equilibrium position in one of the lattice symmetry directions [13]. 

Thus we shall consider the random fields created by point charge defects and elastic 
dipoles, because these defects are peculiar to the abovementioned disordered systems and 
do not depend on the sample preparation method. We shall write E(?-;) = &(vi) + &(T;), 
where El  and & are fields from point defects and elastic dipoles, respectively. 

The electric field from point defects with a charge zje can be written in the usual form 

EO r!. 
.I ‘1 

(3) 

For lattices with a piezoeffkct in the paraelectric phase the electric field &(T;) of elastic 
dipoles has the form 

~ b ( ~ i )  = d a p y u p y ( T i j )  (4) 
j.6.y 

where dapy are the piezoelechic tensor components and ~ p ~ ( ~ i , j )  are the components of 
the deformation tensor, created at the pi point by elastic dipoles Gap situated at the points 
TI. The relation between up,, and C2py for the general case is cited in [14]. Below we 
shall limit ourselves to the most usual case of elastic dipoles as dilatation centres, because 
all point defects are dilatation centres, and consider only the dilatation properties of the 
elastic dipole, i.e. put Gap = fio&pg. The deformation tensor components in the isotropic 
approximation for a space without boundaries can be written in the form [14] 

where m = rij/r;j and U is Poisson’s ratio. Note that in highly polarized dielectrics with 
soft modes the components of the deformation tensor at sufficiently high elastic dipole 
concentrations may contain terms of a constant sign proportional to exp(-2r/rc) together 
with terms of type (5) [15]. In our work, however, we shall limit ourselves to the case of 
not very high concentrations when the deformation tensor components can be well described 
by equation (5). 

3. Distribution function of random fields 

The observable physical quantities for disordered ferroelectrics depend strongly on random 
field realizations and for their calculation it is necessary to introduce a distribution function 
of random fields. 
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This distribution function has the form 

f ( E )  = (V(E - Wri))))  

where the bar denotes averaging over spatial configurations of random field sources, ((. . .)) 
means thermal averaging both over orientations and over the random field distribution so 
that the distribution function can be expressed through itself in a self-consistent manner. 
The value E(r,)  is determined from equation (I). The calculation of f ( E )  from equation 
(6) will be carried out by a statistical method widely used for the calculations of ilbsorption 
lineshapes in radio and optical spectroscopy [16]. In the framework of this method we shall 
introduce the integral representation of the &function. We have from (6) 

where we use summation over repealed Greek indices and in is the number of random field 
sources (see (1)). If we can calculate the quantity under the averaging signs exactly, we 
would obtain a rigorous solution of the problem. Unfortunately we cannot calculate this 
quantity exactly and to calculate it  we neglect the correlations in the impurity sites, i.e. wc 
shall use the h t - o r d e r  statistical method 1161. This permits us to consider the impurities 
as independent sources of a random field so that for the mth source 

where N,,, is the number of impurities of inth type and V is the crystal volume. Then we 
consider thc conventional thermodynamic limit, i.e. put n, = N,/V =constant, while N,", 
V + CO. This gives 

To be more specific, let us rewrite equations (7) and (8) in the form which explicitly takes 
into account k independent random field sources E(r)  = xk=, Em(r): 

L ( p )  =n,J l i (expl - ip .E , , ( r ) l -  l ) ) d 3 r  (10) 

where E,(r) is determined by equations (1)-(4) and n, is the concentration of mth-type 
defects. To fulfil the self-consistent thermal averaging, let us take into account the fact that 
only random fields of electric dipoles determined by the first term in ( 1 )  dcpend on the 
direction 1. 

Until now, only the case of tWo orientable dipoles has been considered in dctail [ 171; 
we shall make detailed calculalions just in this model ( I ,  = & I ,  I ,  = I,. = 0). This model, 
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being relatively simple, gives a clear illustration of the influence of additional defects on 
the ferroelectric phase transition, induced by electric dipoles. At the same time, as analysis 
[ 1-51 has shown, the latter model gives a qualitatively correct description of the situation in 
dielectrics with electric dipole impurities. 

Then the sign ((. . . j )  means averaging over 1 directions with the one-particle Hamiltonian 
‘Ho = 1 . E ,  where E is the argument of function (9), and then averaging over E .  For two 
orientable dipoles this gives 

cosh[E,/kT - iKzz(r)p,] 
cosh(E,/kT) 

((exp(-ipzKz2/J - 1)) = 

cos[K‘:(r)pJ - 1 - itanh(E,/kT)sin[Kz’(r)pl]. (1 1) 

Self-consistent averaging over E in (1 1) can be made by the substitution tanh(E,/kT) = (1) 
to L, E L,  where 

L = f(E, L)(O d E  (12) 

is the ferroelectric phase transition order parameter [I71 arising at T = Tc (phase transition 
of the second order) or at the critical concentration of dipoles (T = 0). 

It is seen from equations (IO) and (11 )  that F,(p) are complex quantities so that 
Re[F,(p)] = s{l - cos[E,(r). p]]d3r  determines the width of the distribution function 
(random field dispersion), while Im[F,(p)] = J{sin[E,(r) . p ] )  d3r  determines the position 
of the distribution function maximum (most probable value of the random field). It follows 
from equation (9) that to obtain the distribution function it is necessary to calculate F,(p) 
by (IO) for each type of random field source. 

Substituting &(r)  from (3) into (10) and calculating the integral, we obtain for point 
charge defects 

Calculation of F z ( p )  for dilatation centres depends on the number of coefficients dCfly and 
hence on the lattice symmetry. For mixed crystals of the KDP family, only those duo, for 
which a, ,9 and y are different, differ from zero, and drxy >> d,,,, d,.,, ( z  is the polar axis) 
[18]. Calculations for this case with respect to equations (IO), (4) and (5) give 

The fact that imaginary parts of F,(p) for these defects are equal to zero tells us that they 
make a contribution to random field dispersion only and thus should inhibit the creation of 
long-range order. 

For electric dipoles we can find from (1 1) that 
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The calculation of integrals (12) for ifzz in the form (2) for arbitrary values of the parameter 
n3r; were carried out numerically [7]; analytical calculation can be made in two limiting 
cases: n3rf < 1 and n3rf >> 1 (Lorentzian and Gaussian limits, respectively, for the 
distribution function). In the first case the long-range order in the system with impurity 
electric dipoles does not appear even without defects of another type. That is why we 
shall consider the most interesting Case of a Gaussian distribution function of electric dipole 
random fields, when a phase transition without defects of another type is firmly realized. In 
this case, 

M D Glinchuk and V A Stephunovich 

If both point charge defects and dilatation centres are present in the system, we can obtain 
by substitution of (13). (14) and (16) into (9) the following expression for the distribution 
functiori: 

Since in our model the long-range order parameter is oriented along the z axis, we can 
convert in equation (17u) IpI + pi. Then it follows from ( 1 7 ~ )  that 

In the general case the function f i ( E z )  is a convolution of Gaussian, Lorentzian and 
Holtzmarkian distribution functions. This function was calculated numerically and tables 
of dependences of its parameters, namely the width, first moment and maximal amplitude, 
on A,  B and C are presented in [ 161. 

Here we shall make detailed calculations for the important case for disordered systems, 
when only one source of random fields, additional io electric dipoles, exists: either point 
charges or dilatation centres. For the first case we have to put B = 0 in ( I ~ u ) ,  and for the 
second case we have A = 0. Taking into consideration the characteristic expression for the 
aforementioned distribution functions convolution [ 161 given by 

(61Pl)k' = (771Pl)kb + (~lPl)kz 

where q, t and 6 are parameters characterizing the widths of the convoluted and resulting 
distribution functions, respectively, we can find that (putting IpI = l /S )  
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Comparison between (17b) and (18) gives kl = 2, 9 = while kz = ;, t = A2/?  or 
k2 = 1 ,  5 = B for point charges and dilatation centres, respectively. So we can rewrite 
(18) for these two types of defect as follows: 

Equations (19) permits us to calculate quite easily the width 6 of the resulting distfibution 
function, which is a parameter of great importance. 

Below we shall use these results to calculate the critical concentration and phase 
transition temperature. 

4. Ferroelectric phase transition temperature and critical concentration 

The phase transition temperature can be obtained from equation (12) as the temperature for 
which L =/ 0. Rewriting (12) for our model with two possible orientations of the vector 1 
and taking into account that in this model ( I )  = tanh(E/kT), we obtain 

where E E,, L = L,. Putting E -  EoL = x in (20) and expanding the result near T = T, 
in the small parameter L up to the first non-vanishing term, we find the following equation 
for T,: 

where Tcmr = EO is the phase transition temperature in the mean-field approximation. Taking 
into account that the phase with long-range order exists at T < T, only, then this condition 
is the temperature criterion for the existence of long-range order. At T, + 0 we obtain 
from (21) the concentration criterion in the form 

2EOfi(O) > 1. (22) 

To obtain (22) from (21) we put x/kT, = y and took the limit T, --f 0. The inequality in 
(22) reflects the fact that long-range order exists at n3 > (n& only. The latter criterion 
includes two main parameters of the distribution function, which in turn are functions of 
the defect concentrations. 

Substituting (176) into (21) and integrating over x ,  we find the explicit form of equations 
for T,: 

Equations (23a) and (236) determine the phase transition temperature for the cases when 
additional sources of random fields are point charges and dilatation centres, respectively. 
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The concentration criterion has the forms 

5 Jdmexp(-Cp2 - A$") dp  > 1 

T l w e x p ( - C p ' -  B p ) d p )  1. 

The integrals (23) and (24) were calculated numerically and the results are prescnted in 
figures 1 and 2 for the set of dimensionless parameters /L = A/C'I4, A = Si./? and 
A = E o / m .  It can be easily seen from (24) that, without additional defects (A = B = 0). 
long-range order can appear only at A p 1. That is why we used 0 < A-' < 1 for the 
calculations. The case A-' = 0 at any values of p and A corresponds to the mean- 
field approximation (n;rFf -+ 00) and gives Tc/T,,r = 1. It follows from (17a) that 
A-' = (15n,r2)- ' /2  and so to make the figures clearer we put one more scale in the units 

3 n.vc,  

i 0.6 j:ih 
L- L2 

L- 
. 

0 . 2  I a. 2 

0.8 A-> 
I r' 

n3r? 

Figure 1. Phase Innsition temperature versus electric dipole concentration nt different 
concentrations of ( a )  point c h q e s  and ( b )  dilatation centres. The numbers nem the curves 
corresponds to values of B in ( U )  and values of A in (6). For the meaning of venicnl broken 
lines see the text 

0.2 I 0.6 0.2 1 
1.61 0.417 0.185 0.IOL 1.67 0.417 0.187 0.101 

1.1 I bl 

Note that, while the parameter X depends only on the dipole concentration n3. the 
parameters p and A depend not only on the concentration but also on the dipole moment 
d*:  

3 ~ 2  
Qod,,, 1 + v E O A Q  .='"(+) 1! A = --__, 

15 d*n,  n; 3 6 f i  I - v d" 113 

Thus for smaller values of the electric dipole moment thc contribution of additional sources i s  
larger. This makes it  possible to obtain large values of p and A even at small Concentrations 
of additional sources. 

It is seen from the figures that both point charges and dilatation centres have a similar 
qualitative influence to T, and (n;r2)cr. So, with increase in n ,  or n2 (increase in p and 
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c m O . l S S O  -0.6 

0.1170 -0.4 

1.6700 -0.2 I 
I 
I 
I 

0 1 2 3 L 
0 

Figure 2. Critical concentration of electric dipoles versus & (full curve) and A (chain curve). 
The horizonol broken line corresponds to the case & = A = 0. Long-rmge order exists in 
regions I ,  2 and 3 at & = A = 0. in the regions 2 and 3 at p f 0, A = 0 and in region 3 at 
p = 0, A # 0. The ciosses on the curves represent rhe results of calculations using (24u) and 
(24b). respectively. The meaning of the vertical broken line is clear from the text. 

A. respectively), Tc decreases and the critical concentration increases, but variations in the 
latter are larger for dilatation centres (compare full and chain curves in figure 2). It is 
also seen from figure 1 that for example for A = p = 4 and a fixed concentration of 
electric dipoles. e.g. A-' = 0.3, the dilatation centres have destroyed long-range order, 
while point charges only make T, approximately half its mean-field value (see the vertical 
broken lines in figure 1). We can suppose that the disappearance of long-range order at 
certain concentrations of defects of another type can qualitatively explain the absence of 
long-range order in ferroelectrics with a diffuse phase transition, for which concentrations of 
defects of another type are rather large. The vertical broken line in figure 2 shows that, for 
the same A = /J = 4, (n3& N 0.37 for point charges and (n3r2)cr N 1.07 for dilatation 
centres, while, in the absence of additional defects, (nlr;), N 

It follows that the critical concentration of electric dipoles can be changed by additional 
defects by more than one order of magnitude according to the experimental results for 
KI-,Li,Ta03, where ( x u ) ,  N 0.02 was obtained [SI. while calculation with respect to 
random fields of electric dipoles only and two possible orientations of the vector 1 gave 
(x& N 0.001 [7 ] .  Thus the random fields created by dilatation centres destroy long-range 
order more effectively than do point charge fields. This could be due to the slower decrease 
in the Lorentzian function than in the Holtzmarkian function. In other words, the shorter 
the range of the fields induced by the additional source, the more strongly does it inhibit 
the long-range order. 

Note that a critical concentration evaluation can be made with good accuracy on the 
basis of (19) without numerical integration in (24). Really, for the case of dilatation centres 
the width 8 of the resulting distribution function can be written in the following explicit 
form (see (19)): 

= 0.067. 
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For the case of point defects we have the equation 

C + A& - S2 = 0. (25b) 
Taking into account the fact that for the occurence of long-range order the width of 
distribution function should not exceed the most probable field value EO, we can obtain 
from (25a) the equation for the concentration criterion in the form 

A 2 $ A t  (1 t :A2)'/'. ( 2 6 ~ )  
The same condition for point defects has the form h 2 A,, where h, is determined from 
the equation 

l + p & - h i = O .  (26b) 
Equations (26a) and (26b) describe correctly the cases A -+ 0 and /* -+ 0. The plots of 
A-' versus A and p are shown by crosses on the corresponding curves in figure 2. There 
is very good coincidence between the results of calculations due to (26a) and (26b) and 
the more complicated formulae ( 2 4 4  and (24b). Moreover, at large p and A it follows 
from (24a) and (24b) that A-' < 1.02/*-2'3 and h-' < 1.13A-', respectively, while in 
the same limiting case we obtain from (26a) and (26b) I- '  < !X2l3 and A-' < A-', 
respectively. This means that the simplified approach (19) can be readily used to describe 
the concentration criterion for the realization of long-range order for arbitrary (and not only 
for small) values of parameters A and /I. 

It should be noted also that, if several independent random field sources with distribution 
functions of the same shape are present in the host lattices, then A, B and C should be 
considered as the resulting parameters and E = CK B k .  C = (Ek C,)'l2, A = (Ek A#/', 
as follows from (IS) and (19). The increase in the parameters A, B and C will lead to a 
decrease in T, and an increase in the critical concentration, which is seen from the figures. 

5. Conclusions 

The main physical result of the present paper is as follows. The variety of phase transitions 
in disordered ferroelectrics with electric dipoles (impurities as in KTaO3:Li or intrinsic as 
in PMN) is due to the presence in these ferroelectrics of a number of unavoidable defects, 
which create random electric fields additional to those of electric dipoles. The proof of this 
result was obtained by consideration of the influence of these additional defects and their 
fields on the ferroelectric long-range order induced by electric dipoles. We showed that, on 
increase in the contribution from these additional fields, (q)- increases and Tc decreases, 
i.e. ferroelectric order inhibits, being replaced by the dipole glass state. In the n3 range, 
where T, < T d ,  we have a mixed ferroglass phase, because in this range, even at T = 0, 
L c 1, which means that dipoles are not completely coherently oriented. Because additional 
defects increase the range where T, e Ted, they promote the occurrence of a mixed state. 
Note that, as we showed, for shorter-range fields induced by defects, they have a larger 
influence on long-range order. 

The calculations made above also explain the large difference between the (n~).r-values 
measured and those calculated without consideration of the presence of additional defects in 
KTa0':Li. It follows from the aforementioned results that a sufficiently large contribution 
from the additional fields can completely inhibit ferroelectric order. This gives a qualitative 
explanation of the existence of only the dipole glass state in PMN. Quantitative results for 
crystals with a larger unavoidable defect content (e.g. PMN) when correlation effects become 
considerable can be obtained in the framework of the statistical theory of thc second order 
[ 191 for distribution function calculation. 
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